真空腔体
一般真空腔体内部是规则的长方体,用一面加热进行热辐射的方式热传导不能合理涵盖整个腔体的内部空间,所以效果不是很理想,.经过试验论证,采取在真空腔体内正上方、正下方、左侧面、右侧面各安装一套加热板加热的方法,采用面对面热辐射方式对腔体内部进行加热.
由于设备在真空状态下采用了上,下,左,右四面四路加热的方法,比单纯一路加热就要复杂多了,这也是温度控制的难点.因此采用PID来进行温度控制调节,控温热偶设置在腔体内部,这样可以更好地控制真空腔体内的温度.
真空技术主要包括真空获得、真空测量、真空检漏和真空应用四个方面.在真空技术发展中,这四个方面的技术是相互促进的.
随着真空获得技术的发展,真空应用日渐扩大到工业和科学研究的各个方面.真空应用是指利用稀薄气体的物理环境完成某些特定任务.有些是利用这种环境制造产品或设备,如灯泡、电子管和等. 这些产品在使用期间始终保持真空,而另一些则只是把真空当作生产中的一个步骤,产品在大气环境下使用,如真空镀膜、真空干燥和真空浸渍等.
真空的应用范围极广,主要分为低真空、中真空、高真空和超高真空应用.
影响真空绝缘水平的主要因素
电极资料
真空开关作业在10-2Pa以上的高真空,因为此刻气体分子十分稀疏,气体分子的碰撞游离对击穿已经不起效果,因而击穿电压表现出和电极资料有较强的相关性。
真空空隙的击穿电压跟着电极资料的不同而不同,研究者发现击穿电压和资料的硬度与机械强度有关。一般来说,硬度和机械强度较高的资料,往往有较高的绝缘强度。比如,钢电极在淬火后硬度进步,其击穿电压较淬火前可进步80%。
此外,击穿电压还和阴极资料的物理常数如熔点、比热和密度等正相关,即熔点较高的资料其击穿电压也较高。比照热和密度而言亦然。这一问题的实质是在相同热能的效果下,资料发作熔化的概率越大,则击穿电压越低。