真空腔体
真空腔体的加热方式分为内加热和外加热两种,外加热是在腔体外部加热,依靠腔体壁将热量传导进来,通过热辐射传递热量;内加热是直接在真空腔体内部进行加热,相比内加热方式,外加热有滞后性,且内加热方式的控温精度相对于外加热来说更,所以一般情况下我们会选择内加热方式.
加热器的选择也非常重要,一般选用安装方便的扣板式加热板进行内加热.扣板式加热板的表面是镜面的不锈钢板,在平整度上比直接由真空腔体壁抛光更有优势,更利于进行热辐射传导热量.
真空腔体加工的注意事项
焊接是真空腔体制作中的环节之一。通常采用弧焊来完成焊接,可避免大气中熔化的金属和氧气发生化学反应而影响焊接质量,弧焊是指在焊接过程中向钨电极周围喷射保护气体气,以防止熔化后的高温金属发生氧化反应。
超高真空腔体的弧焊接,原则上必须采用内焊,即焊接面是在真空一侧,以免存在死角而发生虚漏。真空腔体不允许内外双重焊接和双重密封
个大气压在1cm2的面积上产生约1kgf的压力,对直径20cm的法兰来讲,就是1t的压力。圆筒或球形的腔体,由于构造的特殊性使得压力分散,腔体的壁厚2~4mm就不会变形。
但是,对于方形腔体,侧面的平板上要承受上吨的压力,必须通过增加壁厚或设置加强筋,才能防止变形。
影响真空绝缘水平的主要因素
电极的几许形状
电极的几许形状对电场的分布有很大的影响,往往因为几许形状不行恰当,引起电场在部分过于集中而导致击穿,这一点在高电压的真空产品中特别杰出。
电极边际的曲率半径大小是重要因素。一般来说,曲率半径大的电极接受击穿电压的能力比曲率半径小的大。
此外,击穿电压还和电极面积的大小成反比,即跟着电极面积的增大而有所下降。面积增大导致耐压下降的原因主要是放电概率添加。
真空度
显现了空隙击穿电压和气体压强之间的关系。由图可以看到真空度高于10-2Pa时,击穿电压基本上不再跟着气体压力的下降而增大,因为气体分子碰撞游离现象已不复兴效果。当气体压力从10-2Pa逐步升高时(真空度下降),击穿强度逐步下降,以后又随气压的而。从曲线上可以看出真空度高于10-2Pa时其耐压强度基本上坚持不变。这就标明,真空灭弧室的真空度在10-2Pa以上时完全可以满足正常的运用需求。为了减小腔体内壁的外表积,一般用喷砂或电解抛光的办法来获得平整的外表。